If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+40x+16=12
We move all terms to the left:
25x^2+40x+16-(12)=0
We add all the numbers together, and all the variables
25x^2+40x+4=0
a = 25; b = 40; c = +4;
Δ = b2-4ac
Δ = 402-4·25·4
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{3}}{2*25}=\frac{-40-20\sqrt{3}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{3}}{2*25}=\frac{-40+20\sqrt{3}}{50} $
| 32x+12(3x)+27=0 | | 14x=15+9x | | 10x-8=7x+25 | | 20x-5=19x+1 | | 33k+10=109 | | 21m+5=110 | | 8-(4x+2)=-30 | | 20m-4=76 | | 13=-v+10 | | 2=-y-1 | | 6-2=9x | | -10=5z | | -10=-d-5 | | 6(1-3x)=-2 | | -9=-e-10 | | -1=-5+r | | 5t+18=8t-18 | | 4x+1=13x+3 | | 20w=19w+16 | | 12(x+3=60+6x | | -y-20-20=19y+20 | | 10x-188=4x-4 | | -4.61+0.4y=4.67-5.4y | | 20x+24x+5-1=180 | | 7e−4=31} | | 10=5(x-6) | | 12-20b=-17b | | -2z=16z-9 | | -17m+20=-19m-18 | | 4+18c=2c+15c+12 | | 12w+21=9w | | -3g-1=-2g-8 |